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Abstract—This paper studies the effect of a number of close 
wind farms, where there is a relationship among the farms. 
First of all, data are statistically analysed to check main 
relationships between farms. 

The second analysis goes further in the characterisation of 
wind farm relationships. Artificial Neural Networks (ANN) 
provide a powerful tool to classify data automatically. They 
are very useful in finding patterns of productions of a zone.  
The patterns are obtained only with data of the power of wind 
farms through competitive neural networks and self-
organizing feature maps (SOFM).  

Time variations of wind farm output have been studied in 
the third analysis. Only hourly data is available, so only slow 
variations can be analysed (such as down and dusk 
variations). Two tools have been used in the time study:  
correlogram and spectrogram of each wind farm. 

In addition to this, those patterns found by ANN have been 
compared in the forth analysis with meteorological data of a 
nearby station. 
  

Index Terms— wind energy, wind farm, artificial neural 
network. 

I. INTRODUCTION 

The following paper treats in deep about power generated 
in one year (registered each hour) in the wind farms in an 
area in Spain.  The position of the wind farms is in the middle 
of a valley, and they are less of 170 km apart one to another.  
Because of these short distances, their performance is 
supposed to have a good correlation. 

Their powers are evaluated and averaged each hour, and all 
the wind farms are grouped in nine groups (some farms that 
are very near are considered to have only one value).  In the 
final part of this study, data from a meteorological tower 
located in the middle of the valley are also used. 

We only have hourly data, so it is not possible to study 
neither fast fluctuations nor gusts in the power production.  
It is possible, however, to study the oscillations of several 
hours of duration, as the diurnal/nocturnal variations in wind 
speed and these due to the meteorological evolution in the 
area. 

So, the study presented here is very useful to study the 
stationary performance of wind farms in the power system 
(i.e. to calculate the power flow in a small number of cases 
type that can be considered as representatives of the most 
probable states in the wind farms).  This study is also useful 
as a very first point of departure to estimate the power 
production of wind farms in order to plan the generation in 
an electrical power system.  
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II. STATISTICAL ANALISYS 

The analysed data are expressed in per unit, so the 
productions of all the wind farms are of the same magnitude.  
Some errors have been detected in the original data (outliers).  
The adopted solution consisted in eliminate this entries 
(8233 hourly data are left). 

Another difficulty in the study of the data is that some 
wind farms are been enlarged, and some are quite new 
(therefore, maintenance stops are more probable to happen).  
It is also necessary to consider that the stopping due to fails 
and maintenance can cause some distortion in the data. 

Nevertheless, some of these wind farms are going to 
present bigger productions in relation with their nominal 
power.  This can be seen in the figure 1, in which one can 
observe that the wind farms with less production in per unit 
are numbers 6, 7 and 8.  This can be due to have a location 
with a greater wind resource, or to dispose of WT with larger 
energy production / rated power ratio.  Other point is that 
measured data are apparent power, not active power.  
However, wind farms in Spain operate with power factors 
very close to 1, so all conclusions derived from apparent 
power can be assumed to be valid for the active power. 
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Figure 1: Average of apparent power of wind farm in per unit 

(with reference to rated power) . 

 
Figure number 1 gives us an idea of the average 

productions.  With the histogram of the figure number 2, we 
can see the distribution of the productions en each wind farm 
(i.e. how much time the farm is not generating, with low 
production and with full generation).   

For instance, looking at the figure number 2 we can 
conclude that the wind farms 6,7 and 8 are not generating the 
30% of the time (besides, these farms are the ones that have 
less production). Wind farm number 9 is producing at 
10% ± 5% of his nominal power during the 22% of the time. 
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However, the first wind farm is producing about 100% of its 
nominal power during the 10% of the time.  One can observe 
even that in certain periods, the wind farms 1, 4 and 9 
produce slightly above their nominal power. 
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Figure 2: Histogram of apparent power of wind farms. 

We can also study the relationship between the 
productions in each wind farm.  Every element of the 
correlation’s matrix shows how similar the productions of 
two wind farms are.  If the productions of both parks are 
identical, the correlation will be the unity (100%, brownish 
red colour in figure 3), and if the productions are not 
correlated at all, the factor will be zero (blue colour) –full 
colour version of the figures can be seeing in the CD-ROM 
proceedings of ICREP ‘03–.  That is why the elements in the 
main diagonal of the matrix are all one.  The matrix is 
symmetrical because of it is equivalent to compare the park 
A with the B or vice versa. 

In the following figure we can see the correlation’s matrix.  
The squares with hot colours (the red ones) show that the 
relationship between the wind farms indicated by the row and 
the correspondent column have a high correlation.  However, 
a cold colour indicates that the relationship between these 
two farms is weak. 
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Figure 3: Correlation matrix, codified by colors. 

Attending to this graphic, we can classify the wind farms in 
two groups:  
• The wind farms number 2 to 5 show a great similitude 

between them, because of in the intersection of the 
correspondent rows and columns have hot colours, 
whereas in the rest of the rows the correlation is lower 
(colder colors). In this group, the most representative 

wind farm are the third and the fourth ones, and the one 
that present a more different performance is number 5. 

• The wind farms 6, 7, 8 and 7 show also a very good 
similitude among them.  The least representative wind 
farm in this group is number 9. 

• The wind farm number 1 presents behaviour more 
similar to farm 9. However, this wind farm is the less 
related to the rest. 

Another conclusion that we can obtain from this data is 
that wind farm 1 and 5 are the ones that present more 
different behaviour from the average. 
 

III. SEARCH OF OPERATION PATTERNS 

A. CLASSIFICATION IN 10 PATTERNS 
If the relationship among the wind farms is linear, the 

statistical study is sufficient.  However, ANN have been used 
to detect non-linear ways of functioning.  In figure number 4 
we can see the operation patterns obtained from clustering all 
data in 10 patterns, codified by colours.  Each row 
corresponds to one pattern and each column corresponds to 
the production in each one of the nine farms analysed.  So, if 
we see in one row that the correspondent column to one farm 
is red, that farm has a high production in this pattern.  If we 
observe the blue colour in the column of a farm, the 
production of this farm is very small in this pattern. 

Although it is necessary to use the bias in the first phase of 
training to obtain a balanced network (each pattern with a 
similar occurrence frequency) an without “dead neurones”. 
After that, the bias is forced to zero and a second phase of 
training has been realized to obtain a network with a lower 
error of classification (at dispense of that all the parameters 
do not have the same relative frequency). Another advantage 
of having a bias zero is that the correspondent pattern to a 
production is that one that is nearer, i.e., the one that has a 
lower Euclidean –geometric– distance.  Consequently, to 
have a bias zero is more intuitive. 

After a first training with bias, a second training without 
bias has been used in order to check its effect.  The patterns 
have no changed significantly in the second training.  The 
small differences are due to the fact that very similar patterns 
have evolved to situations of production slightly more 
specifics.  As shown in figure 5, the first and last patterns are 
now more frequents (without production and with high 
production in al the wind farms). 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
Weight matrix of Competitive ANN 

Wind farm 

P
at

te
rn

 

1 2 3 4 5 6 7 8 9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 
Figure 4: Weight matrix of the Competitive ANN (patterns of wind 
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Figure 5: Frequency of occurrence of patterns of the Competitive 

ANN. 

It is possible to measure the error committed for each 
wind farm in the classification (difference between the 
production of the nearer pattern and the real production).  
This value permits to know which farm is worst adjusted to 
the patterns (this can be used to consider if a wind farm is 
independent of other ones).  The total classification error will 
be the geometric distance (in a space of dimension N=9 wind 
farms) between the measured point and the nearest pattern.   
 

A.1 Low winds 
The first conclusion that we can obtain is that the first four 

patterns correspond to no production in the nine wind farms.  
This result can be foreseen because the greatest part of the 
time, the wind farms do not inject energy to the power system 
(see Fig. 2).   

As a curiosity, we can observe that in the first four 
patterns, the wind farm with a lower production is usually 
the number 8 because the blue colour is darker (in the 
histogram, this one was the wind farm that showed a greater 
frequency in the bin 0,05-0,15% p.u. power and besides, it is 
the one that has a lower average production). 

The three first patterns correspond to productions of every 
wind farm below 12%.  As we have three patterns of a total 
of ten, we can assign a 3x10% = 30% of the time to calm or 
null production. These patterns would correspond to calm 
periods, of weak geostrophic wind (geostrophic wind is that 
that exists in the layer of the atmosphere that is not in contact 
with the terrestrial surface, but to a high height that is not 
strongly affected by the orography, for instance to one height 
of 800 kPa –approximately 1200 meters above the sea level–
). 

The fourth case is surprising because, in the conditions in 
which the wind farms 6 to 9 are still, the number 5 presents a 
production of the 33% (and in a lesser extent, the farms 2,3 
and 4).  Studying the matrix of correlation we saw that the 
farms could be divided in two groups:  farms 2 to 5 in one 
hand, and farms 6 to 9 in the other).  In this case it would be 
necessary to verify if the WT installed in wind farm 5 can 
take advantage of lower winds or if there exist some 
orographic characteristics that reinforce geostrophic wind 
with a certain direction.  

A.2 High winds 
The pattern 9 and 10 correspond to high production. The 

pattern 10 corresponds to the maximum production, 

characterised by high productions in every farm.  A remark:  
although the productions in pattern 10 are high, some farms 
are above 90% of rated production.   

The wind farms that present a higher production are the 
farm 1 and 9. This can be observed in the histogram directly.  
For instance, the farm 1 stays during more than 1000 hours a 
year producing above 105% p.u. and wind farm 9 stays for 
more than 1000 hours above 85%.  (The maximum power of 
these farms is lower than the nominal power.  This can be 
due to the increase of the installed power in the farm without 
having updated the nominal power in the database). 

 

B. CLASSIFICATION IN 50 PATTERNS 
Once classified the usual functioning of a group of farms, 

we are going to make a search of a bigger number of patterns.  
This will permit us the visualization of some critic case, that 
although is presented only a 2% of the time  (some 44 hours 
of functioning type in one year), it has a special interest (for 
instance, very high productions in every farm). 

In the case of 50 patterns, the topology of the competitive 
neuronal network is no efficient enough and the process of 
learning is quite sensitive to the parameters.  , the algorithm 
of training has some difficulties to choose a high number or 
patterns, increasing the number of neurones in the 
competitive network.  As a consequence, the polarization or 
bias of the neurones increases significantly in order to not 
produce "dead neurones".  Having a high bias, the 
classification is not so good. 

For the election of 50 patterns of functioning, we have 
chose to use self-organised maps (SOFM).  This solution is 
more logic, due to the fact that these types of networks are 
more appropriated to solve problems of automatic 
classification when the number of pattern to extract is 
elevated. 

We have decided to use the one-dimensional connection 
among the neurones. If the wind farms analyzed 
corresponded to two or three meteorologically independent 
zones, a two-dimensional or a three-dimensional scheme 
would have been more appropriate.  To compensate the low 
connectivity of the one-dimensional network, a parameter of 
vicinity of 3 is used instead of the usual 2.  The result of the 
self-organised map can be seen in graphic number 6.  
Besides, one can observe that using a linear connection, the 
patterns are organized.  The average error of the 
classification of a production to a pattern is 0.0045 p.u. 
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Figure 6: Weight matrix of SOFM with 50 neurons 
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In figure 7 we can see the frequency of occurrence of each 
pattern (with a number as high of patterns is difficult to 
obtain that all of them have a similar frequency of 
occurrence). 
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Figura 7: Frequency of occurrence of patterns of SOFM. 

A remark:  in figure 6 the wind farm 1 have been moved next 
to the farm 9 in order to produce a nicer scheme.  This is due 
to the fact that the productions of both farms are relatively 
correlated. 

IV. FREQUENTIAL STUDY 

In order to study the evolution of the power in each farm, a 
joint time-frequency analysis has been used, by means of the 
spectrogram.  This tool gives us, in each farm, the 
distribution of the oscillations of the power as time varies.  
The horizontal axis is the axis of time and the vertical axis is 
the one of frequencies. A hot colour (red) indicates that in 
that moment an oscillation of power have been produced, 
with the frequency associated to the vertical axis.  The colour 
at a point indicates the amplitude (in dB) of the fluctuation 
content of that frequency at that time.   

To understand better this graphic, we are going to see 
some examples.  A frequency of 1 would indicate that a daily 
oscillation of power has been produced.  This frequency 
appears in every farm because of usually at dawn the wind 
speed is minimum and maximum at dusk due to the warm-up 
of the surface by the sun  (for instance at 7 h. the power 
usually is lower and at 19h. the power is usually bigger). 

A frequency less than 1 would be associated to changes in 
the meteorology. A frequency of 0.25 would indicate that in 
a period of 4 days the power has lowered and has increased 
again of vice versa.  In the spectrogram one can observe that 
the slow fluctuation of power (daily oscillations) is frequent 
because they have red colours associated. 

You can also observe in the spectrograph that the intraday 
oscillations (the ones that are produced several times a day) 
are very few frequents. This means that although the produc-
tion of the wind farms is continuously changing, these hourly 
variations have a random character; they have no periodicity 
nor a determined pattern.  If the power oscillates several 
times a day during a significance period, this would be 
probably due to a periodic disconnection in the machines 
(disconnection by overheating in the gearbox with a high 
wind speed, etc.). These are the reasons why the superior part 
of the spectrograms has a colder colour (variations of some 
hours  of period rarely occur), whereas the bottom part has a 
hotter colour (daily variations and meteorological changes).  

There can be also observed that when an abrupt change in the 
production of the farm (for instance due to a disconnection 
of the farm or to an erroneous data), this produces a column 
of hotter colours.  This is due to the fact that a steep change 
in the power, no cyclic, generates a wide spectrum of 
frequencies. 
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Figure 8: Spectrogram of power of wind farm No. 9, 

Given the characteristics of the used data, it is not possible 
to study the fast oscillations of power due to gusts, 
disconnections and sudden changes of production.  To this 
type of study it would be necessary data sampled several 
times by second and the period of study could be diminished 
proportionally. 

To compare the variability of the power in several farms is 
preferable to observe the spectrum averaged during all the 
year.  In figures 6 and 7 it is possible to observe that all the 
farms show a similar behaviour, although in some of them 
the power is slightest more fluctuating that in others.  For 
instance, the daily modulation is lower in the farm 3 and it is 
superior in 1 and 9. 
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Figure 9: Power Spectrum Density (one year modulus average) of 

farm outputs. A peak can be noticed in 1 fluctuation/day. 

V.  STUDY OF THE TEMPORAL CORRELATION 

The correlogram and the spectrogram give similar 
information and are related mathematically [1, 2]. Although 



INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY (ICREPQ’03) 
 

the spectrogram is more adequate for clearly periodic signals, 
the correlogram is more adequate for the study of random 
processes and time series.  Another possibility to identify the 
system is to use parametric means to the identification of 
systems, but these have the disadvantage that it is necessary 
to make suppositions about the model of the system [3, 4]. 

The correlation coefficients have been used in the graphics 
to compare the results in wind farms that has different vari-
ance.  Due to the fact that the average of power is not sub-
tracted from the data, the correlogram is not nullified with 
increasing lag times.  You can also observe that the graphic 
present some fluctuations every 12 hours due to a meteoro-
logical cycle every 12 and 24 h (each two peaks of 12h there 
is other one more noticeable due to the daily variation). 

In figure 10 one can observe that the correlogram presents 
a sharp decrease in the first hours and then the decay is 
slower.  This can be interpreted as the power in the farms 
varies between a 20 and a 28% of its variance in the first 5 
hours (the correlation coefficient is between 0.8 an 0.72 
depending of the farm).  With a lag of 10 hours, the 
production has changed between a 28 and a 35% of its 
variance. 

As in the frequential study, the farm with bigger power 
variations is the number 1, and the one of the lower 
variations is number 8. However, this difference is clearer in 
the correlogram. 
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Figure 10: Auto-correlogram of wind farm output. 

To summarize, the power of a farm usually varies in the 5 
first hours in an interval of ±20% to an ±28% of its variance  
(depending on the farm) with an confidence interval of 68% 
(supposing that the generated power by the farms is a random 
process that follows a normal distribution).  From the 10 h, 
these intervals slowly increase.  One can even observe that 
the following day, to the same hour, the interval is of ±34% 
to ±50% of the variance of each farm, with the same 
confidence interval.  To obtain a confidence interval of 95% 
in p.u. power, we must multiply the previous percentages by 
1.96 and by the variance of each farm. 

In figure 11 the correlation of the farm 1 is shown, with 
respect to the rest of the farms.  The corresponding 
coefficient to zero lag hours corresponds to the first row of 
the matrix of correlation. 
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Figure 11: Correlogram of wind farm output respect wind farm 1. 

The farm with a more similar behaviour to the 1 is the 9, 
and the more different is number 2.  You can observe, as in 
figure 10, that there is a fast decay of the correlation in the 
first 24 h.  From this level, the correlation tends to the 
stationary value.  The ripple due to the cyclic behaviour is 
noticeable: the production presents patterns that are 
reproduced every 12 and 24 h. 

A.1 Additional considerations about the measurements 
The period of integration has a filtering effect on the 

power fluctuations.  Fluctuations due to the tower shadow, 
gusts, etc. is studied from power measured at least at a 
sample rate of 10 Hz. However, in this work the data 
integrated each hour are treated and so these fluctuations (in 
the range of seconds and milliseconds) do not appear. 

If the prediction of the production is desired, it is desirable 
to have in mind the meteorological prediction and the 
stopping for maintenance. Nowadays, there is a big effort in 
predicting the wind (for WT control) and the farm output 
(for electrical dispatch plan) [5, 6, 7, 8, 9]. 

VI. RELATIONSHIP BETWEEN THE ENCOUNTERED PATTERNS 
AND THE METEOROLOGICAL PARAMETERS.. 

A meteorological station located approximately in the 
centre of the farms has been used to study the meaning of the 
found production patterns.  Although the wind speed is 
measured at some 10 m. above a roof, the data are valid 
enough to our aim. 
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Figure 12: Wind direction rose of a nearby meteorological station. 
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Figure 13: Histogram of wind speed at the meteorological station. 

A. PATTERNS CHOSEN FOR THE METEOROLOGICAL STUDY 
The patterns chosen for the meteorological study are 

shown in figure 14. Basically, they are the same as those of 
figure 4. The patterns 1 and 2 have been substituted here by a 
null production pattern and the pattern 10 has been added, 
corresponding to a 100% production in all farms. 

This classification does not significantly increase the 
classification error and it is very natural to consider no 
production and full production schemes. 
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Figure 14: Patterns of wind farm output utilized in the 

meteorological study. 

1 2 3 4 5 6 7 8 9 1 0
0

5

10

15

20

25
Frecuencia de apar ic ión de los pat rones en %

 
Figure 15: Frequency of occurrence of patterns. 

The relative frequency of patterns (see fig. 15) varies 
because the bias has been nullified in the second training, two 
patterns have been removed and other two patterns have been 
added. 

Full production (1 p.u. production in all farms) is the least 
frequent pattern (4,4 %). Nevertheless, pattern 9, being very 

similar to 10 but having less production in farms 2,3, 5 and 
8, shows a high frequency (16.6 %). Although full 
production has a probability inferior to 5 %, it is worthy to 
study because it can result in electric overload of some tie 
lines and transformers. 

B.  METEOROLOGICAL PARAMETERS 
In order to obtain the relationship between the 

meteorological parameters and the patterns, the histogram of 
the meteorological parameters have been computed for every 
pattern. The vertical axes of the graphics are the relative 
frequency in % of the pattern minus the relative frequency in 
% of the whole data. In other words, vertical axes are the 
deviation of the histogram whereas the horizontal axes are 
the values of the meteorological variable under study. 

On the one hand, if the histogram of a meteorological 
variable has the same frequency distribution than the average 
of data, then the variable is not related to the pattern. On the 
other hand, if the histogram deviates significantly from the 
average, then the variable is related to the pattern. 

If the difference between the pattern histogram and the 
average of the data is positive in a range, the pattern will 
happen more likely if the meteorological parameter is in this 
range. Correspondingly, a negative difference means that the 
probability of this pattern to appear is lower when the 
meteorological variable is in this range. 

B.1 Influence of wind speed 
In order to study the wind speed associated to each of the 

patterns, the deviation with respect to the average has been 
calculated. The horizontal axis of figure 16 is wind speed and 
vertical axis is the deviation of occurrence frequency in %. 
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Figure 16: Deviation of histogram of wind speed for each pattern. 

Patterns 1 and 3 are associated with low winds and calms 
at the meteorological station because there is a positive 
deviation in winds lower than 3,5 m/s. The null production 
pattern (1) is associated with the lowest wind speeds. 

Patterns 2, 4 and 7 are associated to medium speeds, be-
tween 5 and 7 m/s. Surprisingly, pattern number 7 is 
associated to moderate wind speed although the production 
is high. Pattern number 5 is related to winds in the 5 to 10 
m/s range. 

The patterns corresponding to the highest production 
(number 9 an 10) are associated to the strongest winds. 
Nevertheless, the full production pattern is associated to 
wind which are not as strong (9 to 11.5 m/s) as those 
associated to pattern 9 (8 to 14 m/s). This is due to the fact 
that fixed blades, fixed speed turbines yield its maximum 
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output at its nominal wind speed. If the wind surpasses that 
speed, the production decreases due to aero dynamical stall. 

Pattern number 6 shows a frequency distribution quite 
similar to the average (the deviation from the average is low, 
as it can be seen in Fig. 16). This fact indicates that this 
pattern is not related to a specific range of wind speed. We 
will see in the next sub-section that pattern # 6 is clearly 
connected to wind direction. 

B.2 Influence of wind direction 
Wind direction is a meteorological variable strongly 

interrelated to the patterns. This strong relationship is noticed 
by the high deviation of frequency of occurrences of patterns 
from average (more than 25 % deviation in some cases). A 
positive deviation indicates that the pattern is more likely to 
happen if that wind direction is measured at the 
meteorological station. If the deviation is negative, the 
pattern scarcely happens at that wind speed.  

The predominant wind of the valley corresponds to NO 
direction (from 270 to 310º); we will call it hereafter wind 
A. Wind B is a less usual wind and blows in the opposite 
direction. Wind B has South direction and it typically 
corresponds to lower speeds than A. Wind called C has SO 
direction (from 210 to 260º) and it is the least frequent. 
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Figure 17: Deviation of histogram of wind direction for each pattern. 

From Fig. 17, it can be seen that patterns number 5, 8 and 
9 correspond to wind A. Patterns number 4 and 7 correspond 
to moderate speed wind B. Pattern 6 corresponds to wind C. 

Low production patterns 1, 2 and 3 are not related to 
specific directions. This makes sense because in calm, the 
direction of the wind is not significant. 

Full production pattern 10 yield a speed distribution 
similar to average, perhaps a little bit more likely with wind 
A than wind B because wind A normally has a higher speed. 

B.3 Influence of relative humidity 
Relative humidity is not a relevant parameter (see Fig. 18), 

except for pattern 7. This pattern is associated to relative 
humidity close to 100% (that means that this pattern occurs 
more often in rainy, cloudy or foggy days). 
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Figure 18: Deviation of histogram of relative humidity for each 

pattern. 

B.4 Influence of the pressure 
Even though pressure is not very significant, pattern 7 (and 

to a less extent patterns 3 and 6) are associated to low 
atmospheric pressures. Moreover, for pattern 7 the relative 
humidity is high, the temperature is moderate (about 10º) and 
the wind type is B. 

Pattern 8 (and to a lesser extent patterns 9 and 5) 
correspond to high pressures and strong A wind. 
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Figure 19: Deviation of histogram of pressure for each pattern. 

B.5 Influence of the temperature 
The temperature is a variable of secondary relevance in 

this study. Its deviations with reference to the average rarely 
reach 5%. The main connection is due to the fact that wind B 
is associated to a higher temperature and humidity than A or 
C winds. 
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VII. CONCLUSIONS 

Artificial Neuronal Networks has proved a suitable tool to 
classify wind farm production. There are strong connections 
among the output of the wind farms of a zone and they are 
difficult to establish in an analytical way. 

When the wind farms are quite related, as the case 
presented in this paper, a few number of patterns is enough to 
characterise wind farm output. 

Competitive Neural Networks and Self-Organised Feature 
Maps are the most suitable topologies for wind farm output 
classification. Whereas the Competitive Network is preferred 
when are classifying in a reduced number of patterns, auto 
organized maps are more suitable for a higher number of 
parameters. Another advantage of these networks is that they 
have a direct physical meaning, which has allowed 
understanding the behaviour of wind farms in a given area. 

Competitive networks and SOFM converged easily during 
the training. However, other topologies as radial basis 
network and LVQ were sensitive to the training parameters. 

The meteorological parameters most related to the patterns 
(those with more than 20% of deviation from average) are 
speed and wind direction. Medium correlations (up to 10%) 
are found for pressure and temperature. Low influence has 
been found for relative humidity (around 5%). 
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